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We present a procedure for the block-diagonalisation of a Fock matrix which does not 
require explicit details of the point group of the molecule concerned. The method consists of 
two parts: (a) the trial eigenvectors determined at the start of a semi-empirical calculation are 
analysed to give an initial set of symmetry-adapted functions; and (b) these symmetry-adapted 
functions are modified by testing for a correct blocking in the initial diagonalisation of the 
Fock matrix. Only minor modifications to existing semi-empirical programs are needed for the 
inclusion of the routines to perform the algorithm. 

1. INTR~DUC~~N 

The value of making explicit consideration of symmetry in molecular orbital 
calculations has been appreciated for some time. For example in ab initio 
calculations symmetry can greatly reduce the time associated with evaluating and 
manipulating n4 two-electron repulsion integrals [ 11. In the semi-empirical methods, 
such as CNDO, INDO and MINDO, the zero-differential overlap approximation 
essentially removes the integral problem and now the major part of the calculation 
involves solving a secular equation [2]. The time required for the eigenvalue problem 
can be reduced if the Hamiltonian is transformed into block-diagonal form using 
symmetry-adapted basis functions. Unfortunately, the derivation of suitable 
symmetry-adapted functions is often difftcult and tedious requiring detailed 
knowledge of the symmetry properties of the relevant point group. 

We present here a simple method for generating symmetry-adapted functions 
suitable for block-diagonalising the Hamiltonian which requires no prior knowledge 
of the group we are dealing with. Apart from the obvious advantage of performing 
quicker diagonalisations, we also have two other motives for using a block- 
diagonalisation approach. Much of our recent work has been with systems involving 
transition metals and because of the weakly interacting d-orbitals, molecular orbitals 
belonging to different irreducible representations are often almost degenerate. The 
near accidential degeneracy introduces small rounding errors in the density matrix, 
which after several SCF iterations cause a breaking of the molecular orbital 
symmetry. Whilst such molecular orbitals are important in their own right, the block- 
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diagonalisation of the Fock matrix ensures that the molecular orbitals retain the 
features of a particular irreducible representation. Secondly, and again because of the 
d-orbitals, we have found for transition metal systems, several total electronic 
wavefunctions, which differ in symmetry type, that are close in energy. By identifying 
the irreducible representation to which an occupied molecular orbital belongs, we can 
ensure that the total wavefunction always corresponds to a certain configuration [3 1. 

The method consists of two parts: (a) an initial set of symmetry-adapted functions 
are determined from an analysis of the trial eigenvectors obtained from a Hiickel type 
calculation, and thus these eigenvectors are usually used in forming a “guess” at the 
density matrix; and (b) the symmetry-adapted functions are refined by checking their 
ability to correctly block-diagonalise the semi-empirical Fock matrix. The refinement 
of the symmetry-adapted functions, part (b), is possible because the Fock matrix, 
which includes the electron-electron interaction terms which were previously absent, 
does not commute with the Hiickel Hamiltonian. We shall see that the method 
requires little calculation of new information. 

A similar procedure for finding the symmetry-adapted functions has been proposed 
previously by Bouman et al. [4, 51 and Chung and Goodman [6] where they analyze 
the characteristic equations associated with the overlap and kinetic energy matrices. 
Our method differs in that we identify the equivalent atom sets in the molecule (i.e., 
the set of atoms which transform into each other through the symmetry operations of 
the group); this enables the symmetry-adapted functions to span only the atomic 
orbitals on the equivalent atoms. Secondly, we initially distinguish the irreducible 
representations by consideration of the orthogonality of the Hiickel eigenvectors. An 
alternative algorithm developed by Bagus and Wahlgren [7] obtains symmetry- 
adapted functions of the full point group from basis functions and integrals belonging 
to a subgroup. Their method makes an initial identification of the high symmetry 
functions by comparing one-electron eigenvalues of the low symmetry blocks. The 
complete separation of the high symmetry function is effected by using the fact that 
the kinetic energy and nuclear attraction operators do not commute. The Bagus and 
Wahlgren algorithm is primarily of value in non-empirical calculation packages. Our 
method is more applicable to semi-empirical procedures where one only considers the 
valence molecular orbitals, and where one does not have to be concerned with 
evaluating n4 two-electron integrals. The method presented herein has an additional 
advantage for semi-empirical calculations in that previous methods [4-61 require 
calculation of the kinetic energy or other special matrices which are not part of semi- 
empirical procedures whereas this method requires only matrix elements already 
present. 

2. THEORY 

2.1. Basis Set Expansions for Molecular Orbitals 

In the electronic structure calculations of the nature we are interested in here, the 
complete set of molecular orbitals (MOs) (vi) are written as 

W=@k (1) 
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where 

is the appropriate basis set, and 

c = (C,C* ***) (4) 
with each eigenvector given as 

(5) 

In the semi-empirical procedures, such as CNDO, INDO and MINDO, the zero- 
differential overlap approximation enables the Hartree-Fock-Roothaan eigenvalue 
equation to be written as 

HC = CE, (6) 

where H is some Hamiltonian or Fock matrix and E is the eigenvalue matrix. 
The expansion of the MOs is not unique, one can always expand vi in terms of a 

different set of basis functions, e.g., 

wi=x. Di (7) 

where {xA} could be some symmetry-adapted functions. The different basis sets can 
be interrelated through 

x=+-T. (8) 

The symmetry of the Hamiltonian H will require the MOs vi to have the same 
transformation properties as an irreducible representation of the point group involved. 
Similarly, one can choose the basis functions x,, to transform as irreducible represen- 
tations; such a basis function is generally called “symmetry-adapted.” In our 
algorithm we require that {x,} have the following properties: 

(1) xlc must be composed of atomic orbitals all with the same 1 value. The 
symmetry operations do not mix orbitals with different 1 values, e.g., pX and py may 
be mixed after some operations but s and p will always be separate. 

(2) xLI must consist of atomic orbitals belonging to the same equivalent atom 
set. This is not an essential condition but does reduce the size of the transformations 
involved in block-diagonalising the Fock matrix. 

(3) For degenerate MOs, all the x,,‘s must be in phase. By being in phase we 
mean that dfli is the same for degenerate components of vi. 
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From the above three properties, one can expand the g-fold degenerate MO belonging 
to the R th irreducible representation as 

where 1 sums over the atomic orbital types, a over the different equivalent atom sets, 
Iz allows for more than one x with the same la index and (r labels the different 
degenerate components. The summations in (9) only include the functions which 
belong to the R th irreducible representation. 

We should also note that C and D can be related, substituting Eq. (8) into (7) and 
comparing with Eq. (1) gives 

C!.a = TR*” . D! I ,) a = l,..., g, (10) 

where TRqa is the transformation matrix for the Rth irreducible representation. 
It is through Eqs. (9) and (10) that we obtain a set of symmetry functions suitable 

for block-diagonalising the Fock matrix. In the next section we give the details of our 
algorithm for choosing the symmetry-adapted functions. 

2.2. Generation of Symmetric Basis Sets 

This section is broken into two parts were we describe: 

(a) the initial search for symmetry-adapted functions; and 
(b) the refinement of the symmetry-adapted functions so as to ensure the Fock 

matrix is correctly block-diagonalised. 

2.2a. Initial Symmetry Function Search 

The equivalent atom sets are first identified by checking the density matrix 

Those atoms which are equivalent to each other will have the sum of the diagonal P,, 
matrix elements for a particular orbital type the same, e.g., for the p-orbitals 

I=1 

Pi= Jf P,,. 
~1 on atomA 

(12) 

In the program we treat those atoms which have matching P:, Pt and Pi as forming 
an equivalent set. 

After obtaining the equivalent atom sets we start the decomposition of the eigen- 
vectors. From the requirements of the symmetry-adapted functions xr given in 
Section 2.1, let us write the molecular orbital we are dealing with as 
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where L is the combined I and a indices; the 0: are given by 

e; = c h CL 
~(1 type, a unique atom set) 

(13) 

(14) 

and represent normalised components of the molecular orbital belonging to the Ith 
orbital type of the ath equivalent atom set. That is, the program decomposes the 
eigenvectors CT into vectors spanning different 1 types and equivalent atom sets and 
renormalises these components to give Uf . These UF are the vectors from which the 
symmetry-adapted functions are obtained. The molecular orbitals are taken to be 
degenerate when the related eigenvalues obey 

1 si - si+ i 1 < Threshold, (15) 

where in practice thresholds of IO-* have been used. Some accidental degeneracies 
amongst the valence molecular orbitals may occasionally occur, however, these 
usually can be removed by modifying the atomic orbital overlap. 

If IJ$ is the first molecular orbital of its degeneracy to be examined, then the UF is 
taken as the first symmetry function, i.e., 

XL 
l,la = p 

L, a = l,..., g (16) 

or 

T1.10 = U* 
L LY a = I,..., g. (17) 

When ~9 is not the first molecular orbital of its degeneracy, the square of the scalar 
product 

= c c 2 { (T;*A”)T . U;}’ (18) 
a4 a 

is evaluated, where A,,,,, is the maximum number of x for a particular irreducible 
representation R with L index determined so far. We should also recall that group 
theory requires the orthogonality condition 

~;.aa,X;;,a’a’ )=~jgf~~aa~~aa,~~r.,~ (19) 

where we also assume that the symmetry-adapted functions are normalised. 
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Now consider the case of a non-degenerate molecular orbital, and assume that we 
have already several x belonging to p different irreducible representations. The 
decomposed functions 13 can be expanded as a linear combination of the symmetry- 
adapted functions, namely, 

and thus the scalar product Sf can have three types of values: 

(9 
(ii) 

(iii) 

s;= 1, 

s;=o, 

o<s; < 1. 

(214 

Plb) 

WC) 

Situation (i) indicates that 191 is a linear combination, spanning completely all the 
symmetry functions x with L index in the Rth irreducible representation and nothing 
further needs to be done with 8:. 

When Sf is zero, this indicates that 6’: is orthogonal to the symmetry functions of 
R th irreducible representation. If all of the ~9; give zero scalar products with each of 
the known symmetry functions of the p-irreducible representations, then 0: is taken as 
giving a new symmetry function for the p + 1 irreducible representation, i.e., 

(22) 

If St is zero for some L index but non-zero for others, then for those L values with 
zero scalar products we write 

XL 
R.&.,+I)~ = ,yl 

L’ (23) 

The final inequality, (21c), indicates that 0; belongs to the Rth irreducible represen- 
tation and a new x can be found by writing 

(~m.x+1) 

e; = C a,xz’al. 
a 

(24) 

That is, by the Gram-Schmidt orthogonalisation procedure we obtain x~3(Amax+1)‘. 
The degenerate molecular orbitals have an additional complication associated with 

the arbitrary phase of the decomposed function 0: 

(25) 

However, the interpretation of the scalar products is analogous to the non-degenerate 
case, namely, 
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(0 
(ii) 

(iii) 

s; =g, (264 
s,R = 0, (26b) 

o<s;<g. (26~) 

These conditions are interpreted in the same manner as for the non-degenerate case. 
For example, for Q being orthogonal to the symmetry functions we put either 

XL p+l*lm = CT, a = l,..., g, (27) 

or 

XL 
R.bbn.xt~)a = ,+I;, a = l,..., g, (28) 

which ever is appropriate. Note (28) will cause phase problems but these are resolved 
by the second part of the program. 

A slightly different orthogonalisation procedure is needed for (iii) so as to retain 
the correct phase of xL R*(amax+l), this procedure is outlined in Appendix I. 

The program analyses each eigenvector in turn, including all the virtual and 
occupied orbitals, so as to ensure that a complete set of symmetry functions x are 
found. 

2.2b. Refinement of the Symmetry Functions 

The blocked Fock matrix is given by 

FE =F;;;,~R’,A’ = (Tf.A)+ F(T;;.A’), (29) 

where -4 is a combination of the 1 and a superscripts, and from group theory FB 
should be null when 

(i) R#R’, 
(ii) (r # a’. 

During the first eigenvalue determination using the symmetry-adapted functions to 
block-diagonalise the Fock matrix, the program checks that the off-diagonal FE 
matrices between the irreducible representations of the same degeneracy are indeed 
zero. An appropriate threshold for finding non-zero FB blocks was of the order 10e9 
for various Ni, clusters, and we expect systems with larger basis sets to require 
slightly larger thresholds. If a non-zero off-diagonal FB is found between R and R’, 
the sets of xR and f ’ are merged and treated henceforth as belonging to the same 
irreducible representation. For example, this situation occurs for diatomic nickel 
oxide. In NiO the d, overlap with the other atomic orbitals with similar symmetry 
may be so small that the Hiickel Hamiltonian generates a n eigenvector completely 
localised on the Ni d-orbital. This d-rr eigenvector is orthogonal to all the other x” 
symmetry functions and the first part of the program causes the xd” function to be 
treated as belonging to a separate irreducible representation. The addition of more n 
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integrals into the Fock Hamiltonian enables a greater mixing between the d-n and 
other n-orbitals and now the two sets of functions can be grouped together. 

In Section 2.2a we noted that there can be some difference of phases for the 
degenerate xd functions. There can also be phase problems when merging xR and xR’ 
as required for the above. To illustrate the alignment, consider the doubly degenerate 
function xf:” which is out of phase with xf,“. The transformed Fock matrix is given 
as 

F;;,^j”*” ’ = (TfvA) F(T; ;A ‘) 

#O when a # a’, a = 1,2, a’ = 1,2. 

The out-of-phase vector Tf :* ’ can be written as a sum of in-phase vectors 

TF:“” = sin yTF$” + cos yT::*‘* 

and 

(30) 

(3 la) 

T R;l’2’ 
L’ = cos yTf:“’ - sin y,T::“* @lb) 

which on substituting into (30) gives 

FA’;.i”’ ,&,‘2’ 

tanY = ,,ll:nq~ = - FJ\2;.Jt,’ , (32) 

where the indices R, L and L’ have been dropped for convenience, enabling the set of 
in-phase vectors to be determined. The alignment of vectors with higher degeneracy is 
given in Appendix II. 

A final test is required on the sign of the degenerate symmetry-adapted functions, 
that is a phase difference of 180” is not detected in the off-diagonal F,. This is 
performed by checking the signs of 

R,la;R.A’a. F , L,L’ a = l,..., g, (33) 

for one complete row or column in each of the g diagonal F, matrices. 

3. DISCUSSION 

In this section we demonstrate the computation savings made through using 
symmetry blocking. The algorithms described above have been implemented in a 
computer program.’ Table I shows the relative computational times for some 
MIND0 calculations on clusters of Ni atoms. In the usual semi-empirical 
calculation, where the Fock matrix is directly diagonalised, the time required for a 
MIND0 calculation is essentially dependent on the basis set size and independent of 

’ The authors plan to eventually submit the program to QCPE. 
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TABLE I 

The Relative Computer Times for Some MIND0 Calculations 

Relative computer times 

Mole- 
cule 

Diagonalisa- 
Total tion with 

number Number of symmetry 
of basis functions in Diago- blocking 

Point func- irreducible nalisa- ~ 
group tions representation tion A B 

Ni, CS 54 30A ’ + 24A u 100 60 56 
Ni, 0, 54 3A,, + lA,, + 1A2, 100 37 33 

+ 1E, + 4E, + 2T,, 
+ 3T,, + 5T,, + 3T,, 

Ni, Cd, 45 9A,+3Az+7B, 100 44 39 
+4B,+ 11E 

Ni, D cdl 18 3.q -I 3z; + 211g 100 79 19 
+ 2n, + ld, + Id, 

Note. (A) Calculation includes the time to determine the symmetry-adapted basis function. (B) The 
symmetry-adapted functions are read at the start of the calculation. 

the atoms involved, except in that these atoms will determine the basis set size. Hence 
the following discussion will apply to any molecule or cluster. 

The first point to note from Table I is that the additional time required for the 
initial determination of the symmetry-adapted functions is only a minor contribution 
to the total computational time. More specifucally, for the larger molecules Ni, and 
Ni, approximately 10 set (on an IBM 370/155 machine) is required to obtain the 
symmetry-adapted functions, whereas for Ni, approximately 0.1 set is required. 

Secondly, Table I indicates that our procedure gives the better computational 
efficiency for molecules with higher symmetry. Such a result is not unexpected as the 
symmetry-adapted functions from groups with high symmetry span more different 
irreducible representations, giving rise to smaller blocked Fock matrices F,, than 
those obtained in the low symmetry case: for example, compare, in Table I, the 
number of symmetry-adapted functions in each irreducible representation for the two 
Ni, clusters. There is a surprising reduction in the computer time needed for the low 
symmetry case of Ni, with C, symmetry. For this molecule, the original 54 x 54 
Fock matrix is blocked into two matrices of size 30 X 30 (for the A’ irreducible 
representation) and 24 x 24 (for A “) accounting for the computational gain. 

Further improvements in our computational times could be obtained by a more 
efficient blocking transformation. At present the blocked Fock matrix FB is obtained 
from the matrix multiplications required by Eq. (29). We hope to develop a better 
blocking procedure using the approach of Pitzer et al. using the theorem that 

S01/45/2-0 
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symmetry related atomic orbital integrals make equal contribution to the symmetric 
orbital integrals [ 81. 

Finally the value of making explicit symmetry considerations for Ni, might be 
questioned. However, as mentioned in the introduction, the advantage here is that we 
can have a greater control over the orbital occupancy; this is demonstrated elsewhere 
131. 

APPENDIX I: ORTHOGONALISATION OF DEGENERATE SYMMETRY FUNCTIONS 

Extending Eq. (20) to the degenerate case, we have for the decomposed function 8 

(AI. 1) 

where fi*Amax+14, the new symmetry-adapted function, is in-phase with the other 
functions of the Rth irreducible representation. ba4 is given by 

ba4aA = @*la, @) (AI.2) 

and forms a g x g unitary matrix B which aligns the phases of 0 and x. Hence the 
required orthogonal symmetry function is obtained from 

(AI.3) 

APPENDIX II: ALIGNMENTOF PHASES FOR 
ORTHOGONAL DEGENERATE SYMMETRY FUNCTIONS 

Let the out-of-phase degenerate functions for the Rth irreducible representation be 
labelled as XL” and the in-phase functions as xz, where for convenience we drop the 
labels R, Iz, I and a. The two functions are related 

x:” =@;bb” (AII. 1) 

which in matrix notation is 

T;=T,B, (AII.2) 

where T, = (T:T: a.. T:), and B is a g x g unitary matrix similar to that of 
Appendix I. 

An out-of-phase transformed Fock matrix F’B is obtained from 

(F’B);f: = (T;“) + FTf: , (AII.3) 
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where xf: is a different symmetry function, with the correct phase, belonging to the 
R th irreducible representation. Substituting (AII.2) into (AII.3) and rearranging gives 

6 = F’B(FB)-‘, (AII.4) 

where FE is a correctly blocked Fock matrix, in fact a unit matrix multiplied by a 
constant. Hence the inverse of 6 can be found and x,” determined. 
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